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Measurements are presented of the time variation of the wall shear stress caused by 
the imposition of a sinusoidal oscillation on a turbulent pipe flow. The amplitude of 
the oscillation is small enough that a linear response is obtained and the dimensionless 
frequency, w +  = W V / U * ~ ,  is large compared with that studied by most previous 
investigators. The most striking feature of the results is a relaxation effect, similar 
to that observed for flow over a wavy surface, whereby the phase angle characterizing 
the temporal variation of the wall shear stress undergoes a sharp change over a rather 
narrow range of w+. At w +  larger than the median frequency of the turbulence there 
appears to be an interaction between the imposed flow oscillation and the turbulence 
fluctuations in the viscous sublayer, which is not described by present theories of 
turbulence. 

1. Introduction 
The imposition of a sinusoidal oscillation on the mean flow through a circular pipe 

causes a periodically varying pressure and velocity field. If the amplitude is small 
enough a linear response is obtained for which 

dp dj5 d$ 
- = -+ - cos(wt), 
dx dx ldxl 

u = U(y) + I.ii(y)I cos (wt+@Jy)), (2) 
with x being the distance in the flow direction, y the distance from the wall, w the 
angular frequency, and t the time. The time-mean pressure gradient and the 
time-mean velocity of the undisturbed flow are designated by dj5/dx and U(y) ; and the 
amplitudes of the oscillations by Idyi/dxl and I.li(y)I. These oscillations in the velocity 
field give rise to oscillations in the shear stress at the wall, 

7, = 7, + l?,l cos (ot + eTW), (3) 

with erW = limg4 @,(y), as can be shown by differentiating (2). This paper presents 
the results of experiments with a fully developed pipe flow in which IQ,I and @,w are 
related to Id$/dx) (Mao 1984). 

The experiments were conducted at high enough frequencies that fluid inertia is 
dominant over most of the flow field and the profile of the disturbance velocity is 
flat over the central regions of the pipe. This is confirmed by the recent experiments 
of Binder et al. (1985) at w+/15 = O.OO0 17 and by numerical solutions of (1 1) for all 
of the models discussed in 93. In  this central region of the pipe where fluid inertia 
is dominant the plug flow disturbance is described by the equation 

aii agi 
p t = - - -  ax (4) 
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A solution of (4) for a sinusoidally varying pressure gradient gives 

and a phase angle relative to the favourable oscillating pressure gradient of 

8 11 =-in. (6) 
Equation (5 )  reveals that, for this high frequency range, even small oscillations in 
the volumetric flow can cause oscilllttions in the pressure gradient many times larger 
than the mean pressure gradient. 

Close to the wall turbulent and viscous stresses become important so that u is 
related to the pressure gradient through the equation 

au ap a 2 u  

at ax a y 2  ay p -  = --+ p-+-. (7) 

The principal theoretical problem in predicting how the oscillations in the wall shear 
stress are related to the oscillations in the pressure gradient is the determination of 
how an oscillating pressure gradient affects the turbulence. The experiments therefore 
provide a test of closure methods that predict 7(t) close to a wall. 

The motivation for this work has come from studies of the wall-shear-stress 
variation along a solid wavy surface over which a turbulent fluid is flowing. It was 
found in these experiments that the amplitude and phase angle characterizing the 
periodic spatial variation of the shear stress along the wavy surface depend on the 
wavenumber a = 2n/h. Of most interest was the discovery of a sharp change in phase 
angle 8, at a value of the dimensionless wavenumber, a+ = av/u*, approximately 
equal to 0.OOO5-0.001. 

Thorsness, Morrisroe & Hanratty (1978) and Abrams & Hanratty (1985) have 
suggested that this observed behaviour of the phase angle is primarily associated 
with the influence of the wave-induced variation of the pressure gradient. They argue 
that at small a+ an equilibrium exists whereby the flow behaves similarly to that 
observed in gradually expanding or converging channels. Regions of the wave surface 
with a favourable pressure gradient experience a damping of the turbulence in the 
viscous wall region ; regions with an unfavourable pressure gradient experience an 
enhancement of the turbulence. As a+ increases the pressure gradient varies so 
rapidly along the wave surface that the turbulence in the viscous wall region cannot 
assume such an equilibrium condition. The sharp change in the phase angle with 
increasing a+ that is observed is a manifestation of the relaxation from an 
equilibrium to a frozen turbulence (for which the wave-induced flow is described 
approximately by a quasi-laminar assumption). 

The principal goal of the present experiments was to investigate the above 
interpretation by carrying out studies of the influence of a rapidly varying pressure 
gradient (in time) on the behaviour of the viscous wall region, without having to deal 
with additional complications associated with streamline curvature that exists for 
flow over a wavy surface. Of particular interest is the determination of whether the 
variation of eTW with w +  ( = wv/u*O) shows the same relaxation phenomenon observed 
for flow over wavy surfaces. 

In  order to meet the above objective it was necessary to design the experiment 
so that w+ was of the same order as the median frequency; that is the frequency 
below which the turbulent velocity fluctuations in the vicinity of the wall contain 
50 % of the energy, w+ = 0.009 x 2n (see Hanratty, Chorn BE Hatziavramidis 1977). 
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At the same time, it was desirable to avoid the requirement of imposed oscillations 
of unrealistically high frequency. This was done by using a system which has 
low-frequency turbulence; i.e. water flow in a 19.4 cm pipe. Sinusoidal oscillations 
with frequencies of 0.325 and 0.625Hz were introduced into the system with a 
plunger-type pump. The amplitudes of the oscillations were made small enough that 
the pressure gradient and wall shear stress varied sinusoidally with time. The 
shear-stress variation at the wall was measured with electrochemical probes mounted 
flush with the wall. It was not possible to design this experiment so that the 
frequency response of the probe did not have to be taken into account. An advantage 
of using the electrochemical method is that an analytical, rather than an experimental, 
scheme can be used to correct for frequency response. 

A number of previous investigators have studied the influence of controlled flow 
oscillations on turbulent flows. An excellent review has recently been presented by 
Carr (1981). The work presented in this paper differs in that attention is focused on 
the wall-shear-stress variation and on high values of w +  . Previous investigators have 
found that the influence of the oscillations on the mean velocity profile is small and 
that their effect on turbulence is felt principally in the region close to the wall. For 
this reason, there exists a need for measurements of the wall-shear-stress oscillations. 
In  most previous studies accurate velocity measurements were not made close 
enough to the wall to determine the time-varying velocity gradient at  the wall. 
Recently, Ramaprian & Tu (1983) reported on direct measurements of the wall shear 
stress with flush-mounted wall-heat-transfer probes. These were at values of w+ too 
low to observe the relaxation phenomenon in which we are interested. In  addition, 
there are uncertainties about these results since no attempt was made to take into 
account the frequency response of the probe. 

2. Description of experiments 
2.1. Experimental flow loop 

A schematic drawing of the loop in which the experiments were performed is shown 
in figure 1.  Details regarding its design may be found in Sirkar (1969) and Sirkar & 
Hanratty (1970). The mean flow was generated by a centrifugal pump while the 
imposed oscillation was introduced by a piston with a diameter of 6.35 cm and a 
stroke length adjustable from 0 to 15.2 cm. The mean flow rate was measured by a 
vortex-shedding flow transmitter (Eastech, Model 2420) with an accuracy of 0.5 %. 
The frequency of oscillation in the experiment was fixed at 0.325 or 0.625 Hz by 
adjusting the circular frequency of the motor driving the piston. The oscillating flow 
component was introduced into the system between diaphragm valve 3 and calming 
section 4. The uniform flow that emerges from the calming section is tripped by a 
1.26 cm long ring consisting of a series of 0.95 cm equilateral triangles around the 
circumference of the entrance of the 19.4 cm pipe. In  the experiment, diaphragm 
valve 3 and bypass valve 17 were adjusted to impose a large pressure drop across 
them. This minimized the distortions of the sinusoidal oscillation in the 19.4 cm pipe 
caused by the time response of the whole system. The flow oscillation at the centre 
of the pipe was calculated, using (5 ) ,  from the measured time variation of the pressure 
gradient, as described in 52.3. 

A rectangular platinum electrode was mounted flush with the wall of a test section 
and located 67.5 pipe diameters downstream from the pipe entrance. The size of the 
electrode was 0.00762 x 0.102 cm with its longer side perpendicular to the mean flow 
direction. The fluid was an aqueous solution, 0.1 M in potassium iodide and 0.0038 M 
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FIGURE 1 .  Schematic of 19.4 cm flow loop. 1 ,  Storage tank; 2, Worthington pump; 3, Diaphragm 
valve; 4, Calming section; 5, 19.4 cm pipe upflow; 6, Teat section; 7,  Anode; 8, Vortex flow meter; 
9, Temperature control unit; 10, Recycling pump; 1 1 ,  Filter pump; 12, Filter; 13, 10.2 cm pipe 
downflow; 14, 10.2 cm bypass pipe; 15, Pulsating generator; 16, Pressure transducer; 17, Bypass 
valve. 

in iodine, maintained at a temperature of 25 &- 0.1 "C. The kinematic viscosity of the 
solution was 0.00866 cm2/s. 

2.2. Electrochemical technique 

When a voltage is applied to an electrochemical cell in an aqueous solution of 
potassium iodide and iodine, the following reactions are carried out on the surfaces 
of the electrodes: 

Cathode I; + 2e + 31-, 
Anode 31-+- I; + 2e. 

When the electrochemical process is controlled by the rate of mass transfer at the 
surface of the cathode (the test electrode) the current flowing in the cell I is related 
to the rate of mass transfer N by the equation 

I N = -  
A,n,F' 

where A, is the area of the test electrode, n,  the number of the electrons involved 
in the reaction and F Faraday's constant. 

From a mass balance, the mass transfer rate per unit area N is related to  the 
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FIGURE 2. Correction factor of amplitude for time frequency responae. ( A  = &,/I& where $1 is the 
amplitude of time-varying transport coefficient and 6, the amplitude calculated by pseudosteady 
approximation. w* = w+Sci, where Sc is Schmidt number.) 

velocity gradient 8 at the surface of the test electrode. If a pseudosteady approxi- 
mation is made, the solution is given by 

K = 0.80, (3', (9) 

and N = KCB, where K is the mass transfer coefficient, a the diffusivity, L the length 
of the electrode and CB the bulk concentration of the reacting species. Equation (9) 
is normally used to obtain the velocity gradient at the wall, or wall shear stress, from 
the measured values of K. Details regarding the measurement of the current and the 
electrochemical technique are given in a review article by Hanratty & Campbell 
(1983). 

When this technique is applied to unsteady flows, especially at high frequencies, 
the pseudosteady approximation might not hold. Fortuna & Hanratty (1971) 
considered the effect of the frequency response of the concentration boundary layer 
on the measured amplitude of the fluctuating flow by solving a linearized form of the 
time-varying conservation equation. In the present work, particular attention was 
given to the phase-lag errors that arise in using (9) to calculate the time variation 
of 7Jt). Extensive numerical and experimental studies on this problem, summarized 
in a recent paper by Ma0 & Hanratty (1985), were carried out before doing the studies 
reported in this paper. Figures 2 and 3 give the corrections of the measured 
amplitudes and phases that need to be used. These results indicate that it is 
impossible to design an experiment for which the use of pseudosteady solution (9) 
would not introduce errors in the determination of the phase of 7&), when the 
frequency of the imposed oscillation is of the same order aa the characteristic 
frequency of turbulent fluctuations. Therefore, the wall-shear-stress data were first 
obtained by using (Q), and then corrected according to figure 3. 

The dimensionless probe width was w+ = 8.6. This is small enough for the spatial 
averaging of the turbulence not to be limiting (Hanratty 1983). 
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FIGURE 3. Phase lag due to time frequency response. (Phase lag g5 means that the measured 

time-varying transport coefficient k lags wall shear stress by g5 due to time frequency response.) 

2.3. Differential pressure measurement 
Since there was a slight difference between the phase and the amplitude of the flow 
oscillation in the test section and the motion of the pulse generator, it was necessary 
to measure the flow oscillation directly in the test section. This was done with a 
differential pressure transmitter (Viatran Model 704-1 15) having a full scale 
& 2.54 cm water column corresponding to & 5 V output. Two pressure taps, 437.4 cm 
apart, were located on the two ends of the test section. 

For a fully developed pipe flow, the pressure gradient applax is a function only of 
time. That is 

- AP 
ax AX 

= - ( t ) .  

This measured time variation of the pressure gradient was used, together with 
equation (4), to calculate the time variation of the velocity at the centre of the pipe. 

The dynamic response of the pressure transmitter was determined in the following 
way: the flow loop was first filled with the solution, then the flow in the 19.4 cm pipe 
was oscillated by the motion of the piston with diaphragm valve 3 completely closed. 
Because of the incompressibility of the fluid, the motion in the test section was in 
phase with the piston and the amplitude of the pressure-gradient variation could be 
calculated from the piston stroke length and frequency. The instantaneous differential 
pressure signals were sampled and processed as described in the next section. Several 
frequencies and stroke lengths were tested. It was found that the phase lag of the 
pressure transmitter was dependent on frequency. It was 9" for a frequency of 
0.325 Hz and 25" for 0.625 Hz. The amplitude correction was dependent on L, f 2 ,  

where L, is the stroke length of the pump. The differential pressure measurement, 
corrected in this manner, served as a standard for characterizing the imposed 
oscillation. 

The time-mean pressure gradient was very small, so it was not possible to compare 
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those for steady flow and pulsating flows. The time-mean pressure gradient was 
calculated from the Blausius formula, assuming no effect of oscillation on the mean 
pressure gradient. This assumption is supported by the measurements of the 
time-mean wall shear stress, described in 94. 

2.4. Data sampling and processing 
The analog signals from the wall probes and the pressure transmitter were digitized 
by a 12-bit A/D converter and sampled by a minicomputer (Digital Equipment 
Corporation LSI-11). The time-mean shear stress and intensity were sampled at a 
rate of 20 Hz. A total of 2000 data points were taken for each run. 

An optointerruptor on the pulse generator was used to provide a pulse of 4 V when 
the piston reached a certain position in each cycle. This pulse served as a phase 
reference. The time between the two consecutive pulses is the period of the 
oscillation. It was measured with a programmable timer (Berkeley 6401) and 
sampled through a real-time clock board in the computer. Drift of the period of 
different cycles was found to be less than 0. 1 yo. For each cycle of oscillation, this 
pulse initiated data sampling. Thirty-two or sixty-four samples per cycle were taken 
in equal time intervals and a total of 500 periods of data were collected on the disc 
of the computer in each experiment. A t  each sampling point the probes and the 
pressure transmitter were sampled at a high enough speed that the measurements, 
for all practical purposes, could be considered simultaneous. 

The recorded data were phase averaged. The amplitude and the phase of the 
velocity gradient at the wall were obtained by a least-square fit of the phase-averaged 
data with a cosine function. 

The spectrum of the turbulent fluctuations of the velocity gradient at the wall was 
obtained by a fast Fourier transformation (FFT) (Bendat & Piersol 1971). The analog 
signals from the wall probe were filtered by an analog low-pass filter with a cutoff 
frequency of 20 Hz before they were sampled by the computer at a rate of 40 Hz. 
The cutoff frequency was much higher than the median frequency, f+ = 0.009 (see 
Hanratty et al. 1977). For example, it is only about 0.6 Hz at Re = 30000. Therefore, 
turbulent fluctuations with frequencies higher than the cutoff frequency make a 
negligible contribution to the total energy (Hanratty et al. 1977). The actual sample 
size for each FFT was 512. A total number of 20480 of data points were used, i.e. 
40 realizations were averaged to give an estimated spectrum. 

2.5. Experimental range 
The experiments were designed to cover a range of oscillation frequencies around the 
median frequency of the turbulent velocity fluctuations in the vicinity of the wall, 
i.e. w +  = 2x x 0.009. This was realized by fixing the frequency of the imposed 
oscillation at 0.625 or 0.325 Hz and varying the Reynolds number of the mean flow 
from 15000 to 70000. The amplitude of the central velocity variation was 10% of 
the mean velocity for most of the experiments. However, for high Reynolds numbers, 
an amplitude of less than 10 yo had to be used because of the limited capacity of the 
pulse generator. An oscillation amplitude of 5 % was also used at Reynolds numbers 
of 15000 and 20000 with a frequency 0.625 Hz in order to examine the assumption 
of a linear response of the wall shear stress to the imposed oscillation. The reason 
for using a small amplitude was to eliminate nonlinear effects and, therefore, to make 
the analysis of the results easier. The experimental conditions are listed in table 1. 
Several dimensionless groups of frequency are also calculated for comparison with 
studies of other researchers. 
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Re 

15000 
20 000 
30 000 
40000 
50 OOO 
60 000 
70000 

15000 
20 000 
30000 
40 000 
50 OOO 
60 OOO 
70 OOO 

f (5-l) 
0.325 
0.325 
0.325 
0.325 
0.325 
0.325 
0.325 

0.625 
0.625 
0.625 
0.625 
0.625 
0.625 
0.625 

8.7 0.1 149 
8.2 0.1 149 

11.9 0.1 149 
12.7 0.077 149 
12.7 0.062 149 
12.7 0.052 149 
12.7 0.044 149 

3.2 0.1 207 
4.3 0.1 207 
6.4 0.1 207 
8.5 0.1 207 

10.7 0.1 207 
12.8 0.1 207 
12.7 0.086 207 

TABLE 1.  Experimental range 

OD 
U* 

99 
77 
54 
40 
35 
29 
26 

190 
148 
104 

77 
66 
57 
49 

- OD - - 
ub 

5.9 
4.4 
3.0 
2.2 
1.8 
1.5 
1.3 

11.4 
8.53 
5.69 
4.27 
3.41 
2.84 
2.44 

O+ 

15 
0.007 4 
0.0045 
0.0023 
0.001 3 
0.0009 
0.00065 
0.00050 

0.014 
0.0086 
0.0042 
0.0026 
0.001 7 
0.001 3 
0.00095 

- 

3. Modelling the flow 
3.1. 11eJining equations 

For a fully developed turbulent pu1,uating flow in a circular pipe the equation which 
governs the phase-averaged oscillating component is 

where ( T ( ~ ) )  = -p(u'v') is the phase-averaged Reynolds stress and 7(t) = -pm, the 
time-mean Reynolds stress. In order to  solve (1 1) the oscillation-induced Reynolds 
stress F), which is defined as 

has to be specified. This is done by following Boussinesq's concept of turbulent eddy 
viscosity. The phase-averaged Reynolds stress then can be written as 

?(t' = (,(t))_,(t), (12) 

If it is assumed that the imposed small oscillation induces a variation of turbulent 
eddy viscosity Pt around its time mean value 2t, the oscillation-induced Reynolds 
stress is expressed as 

if it is assumed that the second-order term ijt(a.ii/ay) is negligible. The time-mean 
Reynolds stress is written as 

3.2,  Time-mean $ow 

Most previous researchers have found that the time-mean flow is not affected by 
imposed small-amplitude flow oscillations. Experimental results on wall shear stress 
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obtained in the present study also support this conclusion. Therefore, the time-mean 
velocity profile is calculated using the same eddy viscosity Vt that represents a steady 
flow. An empirical equation proposed by Reichardt (1951) is used for the prediction 

where K is the von Karmin constant, 0.4. 
In the region close to the wall, the mixing-length theory is used so that 

- - dii 
Vt = 12- ,  

dy 

where 2, the mixing length characterizing the undisturbed flow, is described by the 
van Driest function, 

The term Dm is a damping function defined as 

I = K ~ [ I  -exp ( -Dm)]. (18) 

and 7 may be taken as equal to TW, the time-mean shear stress at the wall. The van 
Driest damping constant A is 26 for pipe flow. 

3.3. Quasi-laminar model for the induced flow oscillation 
The simplest model for the flow involves the assumption that 7(t)  = 0. This means 
that the induced oscillations in a turbulent flow will behave the same as for a laminar 
pulsating flow, i.e. 

This equation has been solved by Sex1 (1930) and Uchida (1956) for a pressure 
gradient with sinusoidal variation in time, 

The model is usually assumed to approximate the flow at very high frequencies, for 
which the spatial variation of the imposed flow oscillation is confined to a very thin 
layer near the wall where turbulence has negligible effect on the time-averaged flow. 

For high frequencies (20) can be rewritten using the distance from the wall, y, 
rather than radial distance, r. The scaling of the resulting equation suggests that 
s/locl is a function of y+w+i. A consequence of this is that (l?wl/7w)/(l o c l / U * )  increases 
as w+: and that the phase angle between FW and oc is constant. 

3.4. Quasi-steady approximation 
For the case of very low frequencies a pseudosteady approximation can be made 
whereby the relation between the instantaneous wall shear stress and the instan- 
taneous centreline velocity is the same as for a steady flow : 

7, = ‘ 2 f q p ,  (22) 
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For a small-amplitude oscillation 
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(24) 
- -  

T, = 7, + 7,, 
and u, = Uc+ Dc, (25) 

where 7, and Uc are the wall shear stress and centreline velocity without imposed 
oscillations. By substituting (24) and (25) into (22) and (23) and neglecting second- 
order terms in Dc and ?, (because of the assumption of a small-amplitude oscillation) 
the following relation for ?, is obtained : 

Equation (26) is strictly applicable to much lower frequencies than were covered 
by the experiments, for which 4 is described by a plug-flow relation in the central 
region of the pipe. The quasi-steady approximation can be applied in a less restrictive 
way by applying it to (16), (17) and (18) to calculate Ft in the same way that a relation 
for i, was obtained from (22). This formulation is the Model C discussed by Thorsness 
et al. (1978) except that ~ ( y ) ,  rather than T,, is used in (19) to define the van Driest 
damping coefficient. Model C has an advantage over (26) in that it can be applied 
over a larger range of frequencies. 

If the spatial variation of 4 is confined to a region where Vt is defined by (17) and 
(18) then it follows from the scaling of (1 1) and the quasi-steady approximation that 
4/lU,J is a function of y+ and w + ,  and that (I?,1/7,)/(l~,l/Z*) and the phase angle are 
functions only of w + . However if the frequency is small enough that the variation of 
4 extends out to the central part of the flow then the quasi-steady approximation 
predicts that these variables are also a function of the Reynolds number, as is evident 
from (26). 

3.5. Relaxation model 
As mentioned in 5 1 strong steady favourable and unfavourable pressure gradients 
have been found to respectively dampen and enhance turbulence in the viscous wall 
region. A number of previous investigators (Launder & Jones 1969; Cebeci & Smith 
1974; Julien, Kays & Moffat 1969; Loyd, Moffat & Kays 1970) have argued that this 
behaviour causes the thickness of the viscous wall region to increase in favourable 
pressure gradients and to decrease in unfavourable ones. They represented this 
effect by allowing A to be a function of the dimensionless pressure gradient, 
p+ = (dp/dz) v / p ~ * ~ .  For small p+, 

(27 1 A = Z(1 +k ,p++I~ ,p+~+  ...), 

with k, x -30 and k, z 1.54 x lo3. This predicts that A increases for increasing 
negative values of p+ and decrease8 with increasing positive values. 

For situations in which the pressure gradient is varying rapidly in the flow 
direction, Launder & Jones (1969), Julian et al. (1969), and Loyd et al. (1970) have 
proposed a first-order lag equation whereby the flow close to the wall sees an effective 
pressure gradient given by the equation 

where k, is a relaxation constant approximately equal to 3000. No physical 
justification is given, so the merit of this lag equation is to be judged by its usefulness. 
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Alternative approaches would be to relax the entire Reynolds stress (Shemer 1981 ; 
Abrams 1984) or to relax the van Driest damping function, D ,  (Abrams & Hanratty 
1985). No great difference is noted in results obtained from these three approaches. 

The pressure gradient in a pulsating flow varies with time rather than with space. 
A straightforward application of (28) to this case requires the definition of a 
convection velocity which characterizes the streamwise propagation of disturbances 
in the viscous wall region to relate spatial variations to time variations. A convection 
velocity of C: = 15 has been chosen to take account of this effect. Therefore, the 
effective damping function for a pulsating flow is defined as 

3.6. Numerical scheme 
Equation (1 1) was solved numerically by a Crank-Nicolson implicit scheme with 
variable spatial grid size. Since the oscillation velocity changes rapidly in the wall 
region and the final goal of the calculation is to find the velocity gradient at the wall, 
it is necessary to use a very small grid size close to the wall. Grid sizes that are 
increasing in a geometric series of Y were chosen: 

where AY., is the first grid size near the wall, and factor H is the ratio of two 
consequent grid sizes. H is chosen as 1.05 for present work. 

The first grid size A Y., was selected small enough that the velocity gradient at the 
wall can be calculated by the assumption of a linear variation of velocity in that 
region. After several tries A Y ,  was taken as $ of the Stokes-layer thickness. 

The initial condition, time zero, was chosen as the quasi-laminar result, obtained 
by solving (20) analytically. Equal time steps of A(&) = &c were used. After about 
five periods the calculated velocities a t  each phase of the cycle were found to 
converge to constant values. 

4. Results 
4.1. Time-averaged properties of the velocity gradient at the wall 

Figure 4 shows the measured time-averaged values of the velocity gradient at the 
wall at different flow conditions. It is observed that the imposed oscillation has no 
effect on the time-mean velocity gradient at the wall. 

Intensities of turbulent fluctuations of velocity gradient at the wall are shown in 
figure 5.  The intensities are the results of long time averaging, and can be seen to 
be independent of Reynolds number and of the presence of an imposed flow 
oscillation. The value, 0.35, agrees with previous measurements by other researchers 
(Sirkar 1969; Fortuna & Hanratty 1971; Eckelman 1971). 

Power spectra of the instantaneous signals are shown in figure 6 for a flow for which 
the median frequency of the turbulence and the frequency of the imposed oscillation 
are the same. The sharp peak at a frequency of 0.63 Hz in figure 6 ( a )  represents the 
contribution of the imposed oscillation to the total energy. Figure 6 ( b )  shows the 
spectrum of turbulent fluctuations of velocity gradient at the wall after removing 
the phase-averaged values from the instantaneous signals. Figure 6(c)  is the 
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FIGURE 5. Time-average intensities of turbulent fluctuations of velocity gradient at the wall in 

different flow conditions. 0 ,  steady state; 0, f = 0.625 Hz;  0, f = 0.325 Hz. 

spectrum of turbulent fluctuations of the velocity gradient a t  the wall in steady flow 
at a Reynolds number of 30000. No major difference is observed between figure 6 (b) 
and ( c ) .  

The peaks a t  frequencies of 13 and 3 Hz are considered to be caused by some 
unknown disturbance in the flow system, because the peaks appear at the same 
frequencies in the steady flow at different Reynolds numbers. 

4.2. Phase-averaged values of the velocity gradient at the wall in a pulsating flow 
Figure 7 ( a )  shows the phase-averaged pressure gradient measured a t  a Reynolds 
number of 15400 using an imposed 0.625 Hz oscillation which has an amplitude that 

FIGURE 4. Time-averaged velocity gradient a t  the wall in different flow conditions. 
0 ,  steady flow; 0. pulsating flow (f = 0.325 Hz); A, pulsating flow (f = 0.625 Hz). 
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is 10 % of the central mean velocity. The pressure-gradient variation is normalized 
with the time-mean pressure gradient. It is seen that the amplitude of pressure- 
gradient oscillation is very large in this case, about eighty times its mean value. This 
is caused by the relatively high frequency of the oscillation and the low time-mean 
velocity. This case represents one extreme in the experimental range, i.e. a low 
Reynolds number and a high-frequency oscillation. The solid line is the least-square 
fit of the data with a cosine curve. It is seen that most of the energy of the flow 
oscillation is contained in a single harmonic. 

Figure 7 (b) shows the phase-averaged velocity gradient at  the wall, normalized 
with its mean value. The 50 % variation of velocity gradient at the wall, compared 
with the 10 % variation of the central velocity, arises because the spatial variation 
of the oscillation velocity is confined to a thin layer close to the wall for this 
high-frequency case. The data are fitted quite well with a cosine curve that is shifted 
about 54" relative to the curve describing the pressure gradient. This indicates a 
linear response of the phase-averaged flow field to the imposed pressure variation. 
A linear response is also indicated from experimental results shown in figure 8, which 
were obtained with a 5% variation of the central velocity. The amplitude of the 
pressure gradient is about forty times that of the mean and the amplitude of the 
velocity gradient is one half of that indicated in figure 7(b). The phase shifts 
of the velocity gradients are the same for both cases. 

It is interesting that phase-averaged intensities of turbulent fluctuations are highly 
nonlinear, as shown in figure 7 (c), even though their time average 'and frequency 
spectra are the same as in steady flow. This nonlinear effect seems to be related to 
the amplitude of the imposed oscillation. For example, the nonlinear effect is not so 
obvious in figure 8(c) as it is in figure 7 (c). It is of interest to note that the maximum 
value of intensity occurs close to when the pressure gradient has its maximum 
favourable value, and the minimum, close to when the maximum of unfavourable 
pressure gradient occurs. This contrasts with the finding for boundary-layer flows 
that turbulence near the wall is suppressed by a favourable pressure gradient and 

Frequency (Hz) Frequency (Hz) Frequency (Hz) 
FIGURE 6. Spectrum of fluctuations of velocity gradient at the wall (Re = 30000): (a) With 
oscillationf= 0.62 Hz; ( b )  after subtracting the oscillation component; (c) in steady flow. 
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FIGURE 7. Phase-averaged values at Re = 15400, f = 0.625 Hz and a = 0.1 (0+/15 = 0.014): (a) 
phase-averaged favourable pressure gradient us. phase ; ( b )  phase-averaged velocity gradient at the 
wall us. phase; (c) phase-averaged intensity of velocity gradient at the wall us. phwe. 

enhanced by an unfavourable one. These results support the argument that the 
turbulence does not respond immediately to a high-frequency oscillation of the 
pressure gradient. 

Figure 9 shows another set of data at a Reynolds number of 6OOOO and a frequency 
of 0.325 Hz. The amplitude of the central velocity oscillation is about 5 %. This case 
represents another extreme in the experimental range; that is a high Reynolds 
number and a low frequency. In figure 9 (a), the amplitude of the pressure gradient is 
seven times its time-mean value and there is some scatter of the data. Phase-averaged 
measurements of the velocity gradient a t  the wall are shown in figure 9(b) .  For the 
same 5 % amplitude of central velocity variation, the responses at the wall for the 
two extremes of the experiments are quite different, as can be seen by comparing 
figures 8 ( b )  and 9(b). For example, the amplitude of the velocity gradient is about 
6 % and the phase shift is 67" in this case, rather than about 25 yo and 54" in the case 
of low Reynolds number and high frequency. The intensity data shown in figure 9 ( c )  
are more scattered. However, a sinusoidal variation can still be distinguished. It is 
interesting to note that in this case the minimum value of the intensity occurs close 
to the maximum favourable pressure gradient and the maximum occurs near the 
maximum of unfavourable pressure gradient. This indicates that high-frequency 
turbulence that occurs at large Reynolds number can adjust to a slow oscillation of 
the pressure gradient. 

It is also to be noted from figures 8(c) and 9(c) that the wave-induced variation 
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FIQIJRE 8. Phase-averaged values at Re = 15400, f = 0.625 Hz and a = 0.05 (0+/15 = 0.014): (a) 
phase-averaged favourable pressure gradient vs. phase ; ( b )  phase-averaged velooity gradient at the 
wall us. phase; (c) phase-averaged intensity of velocity gradient at the wall vs. phase. 

of the intensity of the shear-stress fluctuations increases significantly with an 
increase of the dimensionless frequency from 0+/15 = 0.00065 to w+/15 = 0.014; 
however, this is not as much as would be expected from the very large increase of 
the wave-induced variation of the pressure gradient and the time-averaged velocity 
gradient at the wall. This is another manifestation of the relaxation phenomenon. 

4.3. Amplitude and phase of the velocity gradient at the wall 
Since the velocity gradient at the wall shows a linear response to sinusoidal imposed 
oscillations of small amplitude, its variation can be characterized by an amplitude 
and a phase shift relative to the imposed oscillation. Figures 10 and 11 summarize 
the experimental results obtained under different flow conditions. The phase shifts 
are plotted relative to the variation of the central velocity, which lags the pressure 
gradient by 90°, as described in (6). The amplitude 18,#S'z is normalized by lCcl/E* 
to take account of the effect of using different amplitudes of oscillation. The values 
of (Qc( were not measured but were calculated from the measurements of the 
time-varying pressure gradient by using equation (5 ) .  Thus measurements of the 
amplitude of the oscillating shear stress were actually normalized with measurements 
of the amplitude of the oscillating pressure gradient, since loci = (Id$/dzl)/pw. 

The correlations in figures 10 and 11 are similar to those used by Abrams & 
Hanratty (1985) to characterize the spatial variation of shear stress along a wavy 
surface. The abscissa 0+/15 corresponds to their u+ = 27tv/hu*, since the dimension- 
less turbulence convection velocity in the viscous wall region equals approximately 
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FIGURE 11. Amplitude of velocity gradient a t  the wall relative to the measured amplitude of the 
oscillating pressure gradient, since lo,l = Id@/dzl/pw: .,f= 0.625 Hz; o,f= 0.325 Hz; 0, from 
Ramaprian & Tu (1983). 

15. For fixed frequencies, an increase of w+/15 corresponds to a decrease of Reynolds 
number. Consequently, the data show that the phases and amplitudes for fixed 
frequencies are changing with Reynolds number. It is noted that the results obtained 
for the two frequencies that were studied fall on the same curves when plotted in the 
manner shown in figures 10 and 11. For reference, the data obtained by Ramaprian 
& Tu (1983) are also given. 

The curves designated Model C in figures 10 and 11 are obtained from a numerical 
solution of (11) and (14) by applying a quasi-steady assumption to the turbulent 
viscosity function for a flat wall, as outlined in 53.4. For very large w +  the change 
.ii is confined to a region within the viscous wall layer where flat-wall measurements 
show the turbulent viscosity to be small compared to the molecular viscosity. Con- 
sequently Model C gives the same results as the quasi-laminar model for large w + .  

It is noted that the experimental results shown in figures 10 and 11 disagree with 
the quasi-steady approximation (Model C). In particular, this approximation docs 
not predict the sharp change in the phase angle in the range w+/15 = 0.0005-0.002 
and gives values of the amplitude of ?, which are too large. 

The most important result of this paper is the finding that the phase angle 
characterizing the temporal variation of ?, is similar to that found for the spatial 
variation of 7, over a solid wavy surface by Abrams & Hanratty (1985) at 
a+ x 0.0005-0.0015. This suggests that the same mechanism is operative and that 
the two experiments can be compared by using the convection velocity in the viscous 
wall region. 

The solid curves in figures 10 and 11 were calculated using the relaxation model 
(discussed in 53.5) that provided a good fit to the measurements of Abrams & 
Hanratty for the shear-stress variation over a wavy surface. This model with 
k, = -25 and k, = 3500 appears to be able to represent the amplitude of ? and the 
rapid change of phase in the range w+/15 = 0.0005-0.002. 
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However, there is a marked difference in the results obtained for large frequencies 
and for large wavelengths. For a+ > 0.002 the amplitude of the wave-induced 
variation in 7, agrees with predictions based on a quasi-laminar assumption (or on 
the relaxation model). Experiments using imposed flow oscillations with w+/15 > 
0.002 give significantly lower results than predicted by a quasi-laminar model. 

5. Discussion 
This paper reports on measurements of the time variation of the phase-averaged 

wall shear stress caused by the imposition of controlled sinusoidal oscillations on the 
flow of a turbulent fluid through a pipe. Results are presented for a range of 
dimensionless frequencies w + higher than had been presented by previous investi- 
gators. By using a small amplitude of imposed oscillation a linear response is obtained 
whereby the wall-shear-stress variation is described by a single harmonic with the 
same frequency as the imposed oscillation and with an amplitude which varies 
linearly with the amplitude of the imposed oscillation. The measurements can 
therefore be characterized by a relative amplitude and a relative phase. 

The study used two imposed frequencies and a number of different flow rates so 
that dimensionless frequencies of w +  = 0.0075-0.21 were covered. In  this range the 
results are correlated using wall parameters. Apparently much smaller w+ are 
required for the spatial variation of the disturbance velocity to extend far enough 
away from the wall that pipe Reynolds number is an additional parameter, as 
suggested by (26). The influence of frequency at high frequencies can, therefore, be 
studied either by changing the flow rate or by changing the frequency. 

The dimensionless frequency is defined as w +  = ( U ~ / U * ~ ) / ( V / W )  or as 
w +  = 2(Sv/6,)z, where 8, = V/U+ iH the lengthscale of the viscous sublayer and 
S, = 2v/w is the thickness of the Stokes layer. Consequently, for w+ > 0.08 (or 
w+/15 > 0.0053) the Stokes layer is thinner than the viscous sublayer, and it might 
be expected that turbulence will have a small effect on the imposed oscillations. 
However, as already noted, measured amplitudes are much lower for w+ > 0.08 than 
is predicted for a quasi-laminar behaviour. This result was unexpected and is not yet 
understood. 

Considerable work was done (Mao & Hanratty 1985) to examine the frequency 
response of the wall probes. The consequence of this work is that the possible errors 
involved in correcting for frequency response are far less than the difference from the 
quasi-laminar solution shown in figure 11. The measurements of the oscillation- 
induced variation in the wall shear stress would suggest the possibility that the 
results could be due to some nonlinear effect. This explanation is ruled out since the 
same results have been obtained with two different oscillation amplitudes, as shown 
in figures 6 and 7. Furthermore, measurements of the velocity field very close to the 
wall by Jayaraman, Parikh & Reynolds (1982) and by Binder & Kueny (1982) also 
seem to suggest lower oscillation amplitudes a t  high frequencies than would be 
calculated by the quasi-laminar model. Consequently, we conclude that oscillation- 
induced variations of the turbulence in the viscous wall layer, not taken into account 
by present theories of turbulence, occur in the viscous sublayer a t  high w + .  However, 
these variations appear to have no measurable effect on the time-averaged velocity 
(figure 4) or on the time-averaged turbulence properties. 

It should be noted that the median frequency of the turbulence is w+/15 x 0.004. 
Thus, the effect discussed above appears to occur when the imposed oscillation is 
equal to or greater than the dominant frequency of the turbulence. This result seems 
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consistent with the suggestion by Mizushina, Maruyama & Shiozaki (1973) that 
significant changes in the turbulence structure occur when the frequency of the 
imposed oscillation is the same as the bursting frequency of turbulence. 

For w + / 1 5  < 0.0021 the dimensionless Stokes-layer thickness is greater than eight 
wall units, 8: 2 8. One would not expect a quasi-laminar model to be applicable. The 
straightforward application of a turbulence model developed for flow over a flat 
surface (Model C) is not capable of describing the experimental results and, in 
particular, the sharp change of the phase angle over a rather narrow range of w+. 
However, the use of the relaxation model, which argues that flow-induced oscillations 
in the pressure gradient can enhance (unfavourable pressure gradient) or dampen 
(favourable pressure gradient) turbulence in the viscous wall region (y+ < 40), does 
appear to describe the results. In  fact, the parameters, k, = -25 and k, = 3500, 
chosen to fit the experimental results are close to those used by Loyd et al. (1970) 
to describe boundary-layer flows and by Abrams & Hanratty (1985) to describe flow 
over a wavy surface. 

According to this model the sharp change in phase angle is associated with a 
relaxation phenomenon whereby the turbulence does not respond immediately to 
the oscillation-induced variation of the pressure gradient. Some support for this 
interpretation is obtained from the measurements of the oscillation-induced variation 
of the mean-square values of the turbulence fluctuations in the wall shear stress. At 
low w+ it  is almost in phase with an unfavourable pressure gradient while at high 
w +  it is almost in phase with a favourable pressure gradient (see figures 7 and 9). 

This work was supported by the Office of Naval Research under grant 
N00014-88-82-12-0324 and by the Shell Companies Foundation. 
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